Üçbucaq

Vikipediya, açıq ensiklopediya
Keçid et: naviqasiya, axtar
Üçbucaq

Üçbucaq — müstəvinin bir düz xətt üzərində olmayan 3 nöqtəsini (üçbucağın təpələri) cüt-cüt birləşdirən 3 parçası (üçbucağın tərəfləri) ilə hüdüdlanmış hissəsinə deyilir.

Üçbucağın təpələri adətən böyük latın hərfləri ilə (A, B, C), uyğun təpədəki bucaqların dərəcə ölçüsü yunan hərfləri (α,β,γ) ilə, uyğun təpənin qarşısındakı tərəfin uzunluğu isə əlyazma latın hərfləri ilə (a, b, c) işarə olunur.

Standart işarələmə

Xassələri[redaktə]

  • Üçbucağın daxili bucaqlarının cəmi 180°-dir: \alpha + \beta + \gamma = 180^\circ.
  • Üçbucağın xarici bucaqlarının cəmi 360°-dir.
  • Üçbucaqda böyük bucaq qarşısında böyük tərəf, kiçik bucaq qarşısında kiçik tərəf olur.
  • Üçbucağın hər hansı bir tərəfinin uzunluğu digər iki tərəfin uzunluqları cəmindən kiçikdir (bu üçbucaq bərabərsizliyi adlanır):
  • a<b+c
  • b<c+a
  • c<a+b
  • Üçbucağın tənbölənləri bir nöqtədə kəsişir.
  • Üçbucağın medianları bir nöqtədə kəsişir.

Üçbucağın növləri[redaktə]

Üçbucağın növləri
İtibucaqlı üçbucaq
İtibucaqlı üçbucaq
Korbucaqlı üçbucaq
Korbucaqlı üçbucaq
Düzbucaqlı üçbucaq
Düzbucaqlı üçbucaq
Tərəfləri müxtəlif olan üçbucaq
Tərəfləri müxtəlif olan
Bərabəryanlı üçbucaq
Bərabəryanlı üçbucaq
Bərabərtərəfli üçbucaq
Bərabərtərəfli üçbucaq

Üçbucaqla bağlı parça və çevrələr[redaktə]

Üçbucağın bütün tərəflərinə toxunan çevrəyə onun daxilinə çəkilmiş çevrə deyilir. Üçbucağın daxilinə çəkilmiş çevrə var və yeganədir. Üçbucağın hər üç təpəsindən keçən çevrəyə onun xaricinə çəkilmiş çevrə deyilir. Üçbucağın xaricinə çəkilmiş çevrə var və yeganədir. Üçbucağın verilmiş təpəsini qarşı tərəfin ortası ilə birləşdirən parça üçbucağın medianı adlanır. Üçbucağın hər üç medianı bir nöqtədə kəsişir və kəsişmə nöqtəsində təpədən hesablanmaqla 1:2 nisbətində bölünür. Kəsişmə nöqtəsi üçbucağın ağırlıq mərkəzi adlanır. Üçbucağın təpəsindən qarşı tərəfə, yaxud onun uzantısına çəkilmiş perpendikulyar üçbucağın hündürlüyü adlanır. Ücbucağın üç hündürlüyü bir nöqtədə kəsişir. Üçbucağın verilmiş təpəsini qarşı tərəflə birləşdirən və təpədəki bucağı yarıya bölən parçaya üçbucağın tənböləni deyilir. Üçbucağın tənbölənləri bir nöqtədə kəsişir və həmin nöqtə daxilə çəkilmiş çevrənin mərkəzidir. Üçbucağın iki tərəfinin ortasını birləşdirən parçaya üçbucağın orta xətti deyilir. Bərabəryanlı üçbucaqda oturacağa çəkilmiş hündürlük, median və tənbölən üst-üstə düşür. Bunu tərsi də doğrudur: Əgər tənbölən, hündürlük və median üst-üstə düşərsə, onda üçbucaq bərabəryanlıdır. Tərəfləri müxtəlif olan üçbucağın bir təpəsindən çəkilmiş tənbölən həmin təpədən çəkilmiş median və hündürlük arasında yerləşir. Üçbucağın tərəflərinin orta perpendikulyarları da bir nöqtədə kəsişir və həmin nöqtə xaricə çəkilmiş çevrənin mərkəzi ilə üst-üstə düşür.

Üçbucağın sahəsi[redaktə]

  • 1-ci düstur S ={1 \over 2} ah

Üçbucağın sahəsi, tərəfinin uzunluğu ilə o tərəfə çəkilmiş olan hündürlüyü hasilinin yarısına bərabərdir.

  • 2-ci düstur
  • Heron düsturu:
  • p = {(a + b + c) \over 2} (yarımperimetr)
  • S_{\triangle ABC}= \sqrt{p(p-a)(p-b)(p-c)} = {1 \over 4}\sqrt{(a+b+c)(b+c-a)(a+c-b)(a+b-c)} — Heron düsturu
  • 3-cü düstur
  • S_{\triangle ABC}-də tərəflər a, b, c, bu tərəflərin qarşısındakı bucaqlar isə uyğun olaraq α, β, γ olarsa,
  • S_{\triangle ABC}=\frac {b\cdot c\cdot sin \alpha}{2}
  • S_{\triangle ABC}=\frac {a\cdot b\cdot sin \gamma}{2}
  • S_{\triangle ABC}=\frac {a\cdot c\cdot sin \beta}{2}