İnteqral

Vikipediya, açıq ensiklopediya
Keçid et: naviqasiya, axtar
f(x)-in a dan b'yə qədər olan inteqralı, y=f(x) funksiyasının a ilə b arasındakı alanıdır.

İnteqral - kəsilməz f(x) funksiyasının ibtidai funksiyalarının ümumi şəklinə f(x) funksiyasının inteqralı deyilir.

Tarixi[redaktə | əsas redaktə]

İnteqral sahəsində ən böyük işləri Qotfrid Leybnisİsaak Nyuton görmüşlər. "İnteqral" sözünü və işarəsini ilk dəfə elmə alman alimi Qotfrid Leybnits daxil etmişdir. Bu söz latıncadan "Cəm" ("ſumma", "summa") mənasını verir. İnteqral hərfi ilə işarə edilir:

F(x) = \int f(x)+ c,

[a, b] parçasında götürülmüş f(x) funksiyasının müəyyən inteqralın düsturu belədir:

\int_a^b \! f(x)\,dx \,

Qeyri-müəyyən inteqralın isə düsturu belədir:

F = \int f(x)\,dx.

İnteqral hesabına aid nümunə[redaktə | əsas redaktə]

f(x) = 5x^2 + 9x + 15\,.
f'(x) = 10x + 9 + 0\,.
\int (10x + 9)\, dx = 5x^2 + 9x + C.

Bəsit funksiyaların inteqralları[redaktə | əsas redaktə]

Rasional funksiyalar[redaktə | əsas redaktə]

\int dx = x + C
\int x^n\,{\rm d}x =  \frac{x^{n+1}}{n+1} + C\qquad\mbox{ eğer }n \ne -1
\int {dx \over x} = \ln{\left|x\right|} + C
\int {dx \over {a^2+x^2}} = {1 \over a}\arctan {x \over a} + C

İrrasional funksiyalar[redaktə | əsas redaktə]

\int {dx \over \sqrt{a^2-x^2}} = \arcsin {x \over a} + C
\int {-dx \over \sqrt{a^2-x^2}} = \arccos {x \over a} + C
\int {dx \over x \sqrt{x^2-a^2}} = {1 \over a} \sec {|x| \over a} + C

Loqarifmik funksiyalar[redaktə | əsas redaktə]

\int \ln(x) \,dx = x \ln(x) - x + C,
\int \log_b {x}\,dx = x\log_b {x} - x\log_b {e} + C

Üstlü funksiyalar[redaktə | əsas redaktə]

\int e^x\,dx = e^x + C
\int a^x\,dx = \frac{a^x}{\ln{a}} + C
\int a^{ln(x)}\,dx =\int x^{ln(a)}\,dx=\frac{x\,a^{ln(x)}}{\ln{a}+1} + C=\frac{x\,x^{ln(a)}}{\ln{a}+1} + C

Triqonometrik funksiyalar[redaktə | əsas redaktə]

\int \sin{x}\, dx = -\cos{x} + C
\int \cos{x}\, dx = \sin{x} + C
\int \tan{x} \, dx = -\ln{\left| \cos {x} \right|} + C
\int \cot{x} \, dx = \ln{\left| \sin{x} \right|} + C
\int \sec{x} \, dx = \ln{\left| \sec{x} + \tan{x}\right|} + C
\int \csc{x} \, dx = \ln{\left| \csc{x} - \cot{x}\right|} + C
\int \sec^2 x \, dx = \tan x + C
\int \csc^2 x \, dx = -\cot x + C
\int \sec{x} \, \tan{x} \, dx = \sec{x} + C
\int \csc{x} \, \cot{x} \, dx = - \csc{x} + C
\int \sin^2 x \, dx = \frac{1}{2}(x - \sin x \cos x) + C
\int \cos^2 x \, dx = \frac{1}{2}(x + \sin x \cos x) + C
\int \sec^3 x \, dx = \frac{1}{2}\sec x \tan x + \frac{1}{2}\ln|\sec x + \tan x| + C
\int \sin^n x \, dx = - \frac{\sin^{n-1} {x} \cos {x}}{n} + \frac{n-1}{n} \int \sin^{n-2}{x} \, dx
\int \cos^n x \, dx = \frac{\cos^{n-1} {x} \sin {x}}{n} + \frac{n-1}{n} \int \cos^{n-2}{x} \, dx
\int \arctan{x} \, dx = x \, \arctan{x} - \frac{1}{2} \ln{\left| 1 + x^2\right|} + C

Hiperbolik funksiyalar[redaktə | əsas redaktə]

\int \sinh x \, dx = \,cosh x + C
\int \cosh x \, dx = \sinh x + C
\int \tanh x \, dx = \ln| \cosh x | + C
\int \mbox{csch}\,x \, dx = \ln\left| \tanh {x \over2}\right| + C
\int \mbox{sech}\,x \, dx = \arctan(\sinh x) + C
\int \coth x \, dx = \ln| \sinh x | + C
\int \mbox{sech}^2 x\, dx = \tanh x + C

Tərs hiperbolik funksiyalar[redaktə | əsas redaktə]

\int \operatorname{arcsinh} x \, dx  = x \operatorname{arcsinh} x - \sqrt{x^2+1} + C
\int \operatorname{arccosh} x \, dx  = x \operatorname{arccosh} x - \sqrt{x^2-1} + C
\int \operatorname{arctanh} x \, dx  = x \operatorname{arctanh} x + \frac{1}{2}\log{(1-x^2)} + C
\int \operatorname{arccsch}\,x \, dx = x \operatorname{arccsch} x+ \log{\left[x\left(\sqrt{1+\frac{1}{x^2}} + 1\right)\right]} + C
\int \operatorname{arcsech}\,x \, dx = x \operatorname{arcsech} x- \arctan{\left(\frac{x}{x-1}\sqrt{\frac{1-x}{1+x}}\right)} + C
\int \operatorname{arccoth}\,x \, dx  = x \operatorname{arccoth} x+ \frac{1}{2}\log{(x^2-1)} + C

Xarici keçidlər[redaktə | əsas redaktə]