Bütöv mühit mexanikası

Vikipediya, açıq ensiklopediya
Keçid et: naviqasiya, axtar
Bütöv mühit mexanikası
Diaqram Bernulli qanunundan istifadə etməklə bir çıxarısı göstərir
Tarixi

Bütöv mühit mexanikası mexanikanın bir bölməsi olub materialların mexaniki xassəsini və kinematik analizini öyrənir. Materiallar diskret paylanmış hissəciklər şəklində yox, bütöv (arasıkəsilməz paylanmış) kütlə şəklində modelləşdirilir. Belə bir model ilk dəfə XIX əsrdə Fransız riyaziyyatçısı Auqusto Koşi (fr. Augustin Louis Cauchy) tərəfindən ifadə edilmişdir, amma tədqiqatlar bugün də davam etdirilir.

Qısa şərh[redaktə | əsas redaktə]

Klassik mexanika

Nyutonun ikinci qanunu
Tarixi

Bir obyektin bütöv cisim şəklində modelləşdirilməsi dedikdə obyekti təşkil edən cismin obyektin tutduğu fəzanı tamamilə doldurması fərziyyəsi nəzərdə tutulur. Obyektin belə modelləşdirilməsi maddənin atomlardan təşkil olunmasını və beləliklə bütöv olmamasını nəzərə almır. Buna baxmayaraq atomlar arası məsafələrdən qat-qat böyük ölçü miqyaslarında belə modellər olduqca dəqiqdir. Belə obyektlərin xassəsini təsvir edən differensial tənliklərin çıxarılması üçün kütlənin saxlanması, momentin saxlanmasıenerjinin saxlanması kimi özül fizika qanunlarını belə modellərə tətbiq etmək olar.

Bütöv mühit mexanikası bərk, maye və qazların fiziki xassələrini onların müşahidə edildiyi istənilən xüsusi koordinat sistemindən asılı olmadan öyrənir. Beləliklə, bu fiziki xassələr tensorlarla ifadə edilir ki, tensorlar tələb olunan xassəyə malik riyazi predmet olub koordinat sistemindən asılı deyildir. Bu tensorlar hesablamanı asanlaşdırmaq üçün koordinat sistemləri ilə də ifadə oluna bilər.

Anlayış[redaktə | əsas redaktə]

Bərk, maye və qazlar kimi materiallar "boş" fəza ilə bir-birindən ayrılmış molekullardan təşkil olunub. Mikroskopik ölçüdə, materiallarda çatlar və kəsilmələr (materialın bütöv və davamlı olmaması, onlarda qüsurların olması nəzərdə tutulur) mövcuddur. Buna baxmayaraq, müəyyən fiziki hadisələr "bütöv mühit - cisimdəki maddə miqdarı kəsilməz yayılmışdır və cismin tutduğu fəzanı tamamilə doldurur deməkdir" fərziyyəsi qəbul olunmaqla modelləşdirilə bilər. Bir bütöv mühit elə bir cisimdir ki, o davamlı olaraq çox kiçik elementlərə bölündükdə belə, bu kiçik hissəciklər əsas cismin xassələrini özündə saxlayır.

Bütöv mühit mexanikasının əsas sahələri[redaktə | əsas redaktə]

Bütöv mühit mexanikası
Bütöv (kəsilməz) materialların fizikasını öyrənən elm
Bərk cisim mexanikası
Müəyyən olunmuş dayanıqlı formaya malik bütöv materialların fizikasını öyrənən elm.
Elastiklik
Tətbiq olunmuş gərginliklər götürüldükdən sonra materialın dayanıqlı vəziyyətinə qayıtmasını təsvir edir.
Plastiklik
Kifayət həddə qüvvə tətbiq edildikdə qalıq deformasiyaya uğrayan materialları təsvir edir.
Reologiya
Bərk və maye xüsusiyyətinə malik materialları öyrənən elm .
Hidromexanika
Qüvvə tətbiq olunduqda formasını dəyişən bütöv materialların fizikasını öyrənən elm.
Qeyri-Nyuton mayeləri tətbiq olunmuş kəsici gərginliyə mütənasib olaraq nisbi deformasiya tezliyinə məruz qalmır.
Nyuton mayeləri tətbiq olunmuş kəsici gərginliyə mütənasib olaraq nisbi deformasiya tezliyinə məruz qalır.

Modelin ifadə olunması[redaktə | əsas redaktə]

Şəkil 1. Bütöv cismin konfiqurasiyası

Bütöv mühit mexanikası modeli, modelləşdiriləcək material cisim -nin üç-ölçülü Evklid fəzasında müəyyən bir sahədə yerləşdirilməsi ilə başlanır. Həmin sahədəki nöqtələr, hissəciklər və ya material nöqtələri adlandırılır. Deformasiyaya uğrayan cisim Evklid fəzasında ilkin yerləşmə sahəsindən yerini dəyişməyə başlayır. Deformasiyanın hər anında cismin fəzada tutduğu hər bir sahə bu cismin konfiqurasiyası və ya halı adlandırılır. zamanında cismin konfiqurasiyasına uyğun sahə ilə işarələnir.

Cisim daxilindəki hər hansı bir hissəciyin müəyyən bir konfiqurasiyada vəziyyəti bir radius-vektoru ilə ifadə edilir

Burada həll olunacaq məsələ üçün təyin olunmuş hesablama sistemində koordinant vektorlarıdır (Bax şəkil 1). Bu vektor eyni zamanda həmin hissəciyin hər hansı bir seçilmiş istinad konfiqurasiyasında (adətən cismin deformasiya olunmamış ilkin yerləşmə konfiqurasiyası istinad konfiqurasiyası kimi seçilir) vəziyyəti (koordinantları) -in funksiyası kimi ifadə edilə bilər, belə ki

Bu funksiya fiziki məna verməsi üçün müxtəlif xassəllərə malik olmalıdır. :

  • zamanda kəsilməzdir, yəni cisimin dəyişməsi reallığı əks edirir,
  • istənilən bütün zaman kəsiyində tərs funksiyasına malikdir, yəni cisimdə heç bir hissəcik yox olmur və ya yenisi yaranmır (riyazi olaraq bu, hissəciklərin deformasiya olunmuş və deformasiya olunmamış konfiqurasiyalarda birin-birə əlaqələrinin olmasını nəzərdə tutur),
  • dəyişməz oriyentasiyalıdır, yəni təbiətdə heç bir deformasiya cisimdə güzgü əksi yaratmır.

Modelin riyazi ifadəsi üçün, -nin iki dəfə kəsilməz differensiallanan olması fərz olunur, bununla da cismin hərəkətini təyin edən differensial tənliklər ifadə oluna bilər.

Bütöv mühitdə qüvvələr[redaktə | əsas redaktə]

Bütöv mühit mexanikası mütləq cisminlərin əksinə deformasiya olunan cisimlərlə məşğuldur. Bərk cisim deformasiya oluna bilən cisim olub kəsici müqavimətə, yəni kəsici qüvvələrə (cismin səthinə parallel təsir göstərən qüvvə nəzərdə tutulur) qarşı müqavimətə, malikdir. Anacaq mayelər belə müqavimətə malik deyillər. Maye və bərk cisimləri tədqiq etmək üçün onarlın bütöv olması fərz olunur, yəni onların həcimlərinin, tutduqları fəzanın bütün sahəsini doldurması nəzərdə tutulur. Ona görə də, bötov mühit mexanikasında cisimdəki nöqtə və ya hissəcikdən danışıldıqda bu hər hansı bir atom hissəciyi və ya atom miqyasında bir nöqtə deyil, bu nöqtəni əhatə edən cismin ideallaşdırılmış bir hissəsi nəzərdə tutulur.

NyutonEyler-in klassik dinamikasına əsaslanaraq, bir maddi cismin hərəkəti ona tədbiq olunmuş xarici qüvvələrin təsirindən yaranır. Bu qüvvələrin iki cür: səthi qüvvələr və həcmi qüvvələr olması fərz olunur. [1] Beləliklə, cisimə və ya onun bir hissəsinə tədbiq edilmiş yekun qüvvə belə ifadə oluna bilər:

Əsas tənliklər[redaktə | əsas redaktə]

Bütöv mühit mexanikası materialların xassələri ilə məşğul olur ki, onlar müəyyən uzunluq və zaman miqyasları üçün kəsilməz olaraq təqribi hesablana bilər. Materialların mexanikasını təyin edən belə tənliklərə kütlə, momentenerji üçün müvazinət (balans) qanunları daxildir. Əsas (idarəedici) tənliklər sistemini tamlamaq üçün kinematik asılılıqlar və material tənlikləri lazım gəlir. Material asılılıqları formasına fiziki məhdudiyyətlər termodinamikanın ikinci qanunu-nun bütün şərtlərdə təmin edilməsi tələbi ilə tətbiq edilə bilər. Bərk cisimlərin bütöv mühit mexanikasında, əgər entropiya bərabərsizliyi Clausius–Duhem şəklində təmin edilmişdirsə, termodinamikanın ikinci qanunu təmin edilmiş hesab olunur.

Müvazinət qanunları vahid həcmdə bir kəmiyyətin (kütlə, moment, enerji) dəyişmə tezliyinin üç səbəbdən yaranması ideyasını ifadə edir:

  1. fiziki kəmiyyət özlüyündə həcmi hüdudlandıran (sərhədləndirən) səthindən axır,
  2. həcmin səthində fiziki kəmiyyətin qaynağı (mənbəyi) mövcuddur, yaxud/və,
  3. həcm daxilində fiziki kəmiyyətin qaynağı vardır.

Gəlin, ilə cisimi (Evkilid fəzasında bir açıq altçoxluq) və ilə isə onun səthini (-nın sərhəddi) göstərək.

Cisim daxilindəki material nöqtələri aşağıdakı tənliklə deformasiya olunur

burada, başlanğıc konfiqurasiyada hər hansı bir nöqtənin vəziyyətini (yerini) və isə deformasiya olunmuş konfiqurasiyada nöqtənin yerini göstərir.

Deformasiya qradiyenti verilir

Qeydlər[redaktə | əsas redaktə]

  1. Smith & Truesdell p.97

Mənbələr[redaktə | əsas redaktə]

  • Batra, R. C. (2006). Elements of Continuum Mechanics. Reston, VA: AIAA.
  • Eringen, A. Cemal (1980). Mechanics of Continua, 2nd edition, Krieger Pub Co. ISBN 0-88275-663-X.
  • Chen, Youping; James D. Lee; Azim Eskandarian (2009). Meshless Methods in Solid Mechanics, First Edition, Springer New York. ISBN 1-4419-2148-6.
  • Dimitrienko, Yuriy (2011). Nonlinear Continuum Mechanics and Large Inelastic Deformations. Germany: Springer. ISBN 978-94-007-0033-8.
  • Fung, Y. C. (1977). A First Course in Continuum Mechanics, 2nd, Prentice-Hall, Inc.. ISBN 0-13-318311-4.
  • Gurtin, M. E. (1981). An Introduction to Continuum Mechanics. New York: Academic Press.
  • Malvern, Lawrence E. (1969). Introduction to the mechanics of a continuous medium. New Jersey: Prentice-Hall, Inc..
  • Maugin, G. A. (1999). The Thermomechanics of Nonlinear Irreversible Behaviors: An Introduction. Singapore: World Scientific.
  • Wright, T. W. (2002). The Physics and Mathematics of Adiabatic Shear Bands. Cambridge, UK: Cambridge University Press.

Xarici link[redaktə | əsas redaktə]