Dövri funksiya

Vikipediya, açıq ensiklopediya
Jump to navigation Jump to search

Təbiətdə və texnikada bəzi proseslər periodik olaraq təkrar olunur. Periodik dəyişən kəmiyyətləri öyrənmək üçün dövri funksiya anlayışından istifadə olunur.

Hər bir "x" ədədi ilə birlikdə "x-T" və "x+T" (T sıfırdan fərqli) ədədləri də "f" funksiyasının təyin oblastına daxildirlərsə və bərabərliyi ödənirsə, f funksiyasına dövrü T olan "dövri funksiya" deyilir.

0 (sıfır) istənilən funksiyanın dövrüdür. Dövrü "0" olan funksiyalar maraqlı deyil. Ona görə də T-ni sıfırdan fərqli qəbul edilir. Dövri funksiyanın tərifi aşağıdakı teoremlərlə alınır.

Teoremlər[redaktə | əsas redaktə]

Teorem 1:[redaktə | əsas redaktə]

"T" ədədi "f" funksiyasının dövrüdürsə "(-T)" ədədi də "f" funksiyasının dövri olur.

Teorem 2:[redaktə | əsas redaktə]

"T1" və "T2" ədədləri f funksiyasının dövrüdürsə T1+T2 və T1-T2 ədədləri də f funksiyasının dövrü olur.

Teorem 3:[redaktə | əsas redaktə]

T ədədi f funksiyasının dövrüdürsə, n istənilən tam ədəd olduqda "nT" ədədi də f funksiyasının dövrüdür. 2-ci və 3-cü teoremlərdən alınır ki, funksiyası dövridirsə, onun dövrlərinin sayı sonsuzdur.

Teorem 4:[redaktə | əsas redaktə]

dövri funksiyadırsa, onun təyin oblastı koordinat başlanğıcına nəzərən simmetrikdir və sonsuz çoxluqdur.

Doğrudan da dövri funksiyanın tərifinə görə T sıfırdan fərqli olduqda istənilən x ədədi ilə birlikdə ədədi də -ə daxil olmalıdır.