Eyler inteqralları

Vikipediya, azad ensiklopediya
Naviqasiyaya keçin Axtarışa keçin

1.Qamma-funksiya[redaktə | mənbəni redaktə et]

olduqda

.

Qamma-funksiyasının əsas xassəsi

düsturu ilə ifadə olunur.Əgər natural ədəddirsə, onda

.

2.Tamamlama düsturu[redaktə | mənbəni redaktə et]

tam ədəddən fərqli olduqda

.

Bu düstur arqumentin mənfi qiymətləri üçün qamma-funksiyasını təyin etməyə imkan verir.

3.Beta-funksiya[redaktə | mənbəni redaktə et]

olduqda

,

düsturu dogrudur