Kvant mexanikası

Vikipediya, açıq ensiklopediya
Keçid et: naviqasiya, axtar
Müxtəlif energetik səviyyələrdə hidrogen atomu üçün Şrödinger tənliyinin həlli. Parlaq sahələr elektronun mövqeyinin daha yüksək ehtimallı yerlərini göstərir

Kvant mexanikası - nəzəri fizikanın bir bölməsi olub, Plank sabiti ilə müqayisə olunan fiziki hadisələri öyrənir. Kvant mexanikası hərəkətin Plank sabiti ilə müqayisə olunan qiymətlərində (atom və ya foton miqyaslarında) fiziki hadisələri izah edən nəzəri fizika sahəsidir. Kvant mexanikasının verdiyi proqnozlar klassik mexanikanın verdiyi proqnozlardan əhəmiyyətli dərəcədə fərqlənə bilər. Plank sabitinin makroskopik cisimlərin hərəkəti ilə müqayisədə olduqca kiçik qiymətə malik olması səbəbindən kvant effektləri əsasən mikroskopik miqyaslarda müşahidə olunur. Əgər sistemin fiziki hərəkəti Plank sabitindən kifayet qədər böyük olarsa, kvant mexanikası üzvü şəkildə klassik mexanikaya keçir. Öz novbəsində, kvant mexanikası sahənin kvant nəzəriyyesinin qeyri-relyativist yaxınlaşmasıdır (başqa sözlə, sistemin böyük hissəciklərinin enerji ətaləti ilə müqayisədə aşağı enerjilərə yaxınlaşmasıdır)

Makroskopik ölçülərdə olan sistemleri yaxşı təsvir edən klassik mexanika molekul, atom, elektron və foton səviyyələrində bütün hadisələri təsvir edə bilmir. Kvant mexanikası müvafiq olaraq atomları, ion, molekul, kondensə olunmuş mühitləri və digər elektron-nüvə quruluşlu sistemleri kifayət qədər yaxşı təsvir edə bilir. Kvant mexanikası eyni zamanda elektron, foton və digər elementar zərrəciklərin hərəkətlərini təsvir etmək iqtidarındadır, lakin elementar hissəciklerin çevrilmələrinin dəqiq invariant relyavistik təsviri sahənin kvant nəzəriyyəsi çərçivəsində qurulur. Kvant mexanikasının köməkliyi ilə əldə olunmuş nəticələri eksperimentlər birmənalı təsdiq edirlər.

Kvant dinamikasının esas tənlikləri – Şrödinger tənlikleri, fon Neyman tənlikləri, Lindblad tənlikləri, Heyzenberq tənlikləri və Pauli tənliyidir. Kvant mexanikası tənlikləri riyaziyyatın operatorlar nəzəriyyəsi, ehtimallar nəzəriyyəsi, funskiya analizi, cəbri operatorlar və qruplar nezeriyyeleri ilə sıx şəkildə bağlıdır.

Tarixi[redaktə | əsas redaktə]

Kvant mexanikası öz başlanğıcını alman fiziki Maks Plankın 1900-cü ildə mütləq qara-cismin radiyasiyası və Albert Eynşteynin 1905-ci ildə fotoelektrik effektinin kvant izahına dair nəzəriyyələrindən götürmüşdür. Erkən kvant mexanikası keçən əsrin 20-ci illərində ciddi dəyişikliklərə məruz qalmışdır.

Yeni kvant nəzəriyyəsi (1920-ci illərde işlənib hazırlanmışdır) müxtəlif xüsusi riyazi formalizm üzərində yaradılmışdır. Bunlardan birində riyazi dalğa funskiyası elementar zərrəciyin mövqeyi, momenti və digər fiziki göstəricilərinin ehtimallı amplitudasını təsvir edir. Kvant mexanikası nəzəriyyəsinin tətbiq sahələrinə yüksəkkeçirici maqnitler, işıq diodları, lazerlər, transistor və yarımkeçiricilər (mikroprossesorlar), maqnit rezonans və elektron mikroskoplar daxildir.

İşığın dalğa təbiətinə dair elmi tədqiqatlar XVII və XVIII əsrdə başladı ve nəticədə Robert Huk, Xristian HüygensLeonard Eyler apardıqları təcrübi müşahidələr əsasında işığın dalğa nəzəriyyəsini irəli sürdülər. 1803-cu ildə ingilis fiziki Tomas Yunq məşhur iki-yarıq təcrübəsini yerinə yetirdi və bu təcrübənin nəticələrini özünün «İşıq ve rənglərin təbiətinə dair» əsərində təsvir etdi. Yunq eskperimenti işığın dalğa nəzəriyyəsinin elmi dairlərdə tanınmasında həlledici rol oynadı.

1838-ci ildə digər ingilis fiziki Maykl Faradey katod şüalarını kəşf etdi. 1859-cu ildə alman alimi Qustav Kirxoff qara-cisim radiyasiyası problemini ortaya çıxardı, bunun ardınca isə Avstriyalı fizik Lüdviq Bolsman 1877-ci ildə fiziki sistemlərinin enerji vəziyyətlərini (hallarının) diskret qiymətlərə ifadə oluna bilməsi fikrini irəli sürdü və 1900-cu ildə alman fiziki Maks Plank özünün kvant hipotezini irəli sürdü. Plank belə bir fərziyyə ireəi sürdü ki, enerji diskret "kvantalar" (və ya enerji elementləri) ilə həm şüalanır həm də udulur. Bu fərziyyə qara-cisim radiyasiyası problemində müşahidə olunan mənzərəni izah edə bildi.

1896-ci ildə Vilhelm Veyn qara-cisim radiyasiyasının paylanma qanununu empirik şəkildə müəyyən etdi və indi bu qanun onun şərəfinə Veyn qanunu adlanır. Lüdviq Bolztsamn eyni nəticəyə müstəqil şəkildə Maksvell tənliklərini nəzərdən keçirməklə gəlib çıxa bildi. Bununla belə Boltsmanın tapdığı həll yolu yalnız yuxarı tezliklərdə özünü doğruldurdu. Sonradan Plank bu modeli Boltsmanın termodinamikanın statistik interpretasiyasına düzəliş verdi və indi Plank qanunu kimi tanıdığımız kvant mexanikasina yol açan çox mühüm bir qanunu irəli sürdü.

Maks Plankın 1900-cu ildə mütləq qara-cisim probleminə verdiyi həlldən sonra, Albert Eynşteyn fotoelektrik effektini kvant nəzəriyyəsinə əsaslanmaqla həll etdi. 1900-1910-cu illər aralığında atom nəzəriyyəsi və işığın korpuskulyar nəzəriyyələri elmi faktlar kimi qəbul olundu. Bu nəzəriyyələr müvafiq olaraq maddənin və elektromaqnit radiyasiyanın (şüalanmanın) kvant nəzəriyyələri kimi də baxıla bilər.

Kvant hadisəsini təbiətdə ilk tədqiq edən fiziklərə Artur Komptn, Raman və Piter Ziman olmuşlar. Robert Endryus Milikan fotoelektrik effektini eksperimental yolla tədqiq etmiş və Albert Eynşteyn isə bu effekti izah edən elmi nəzəriyyə irəli sürmüşdür. Eyni zamanda, Danimarkalı fizik Nils Bor sonradan Henri Mozley tərəfindən təcrübi yolla təsdiq olunacaq atomun strukturu nəzəriyyəsini irəli sürür. 1913-cü ildə Piter Debye Bor nəzəriyyəsini daha da təkmilləşdirərək alman fiziki Arnold Zommerfeldin də təklif etdiyi elliptik orbitlər konsepsiyasını irəli sürür. Bütövlükdə bu dövr köhnə kvant nəzəriyyəsi dövrü kimi tanınır.

Planka görə hər bir enerji elementi (kvantı) (E) öz tezliyinə (ν) düz mütənasibdir:

burada h Plank sabitidir.

Plank cox ehtiyatla israr edir ki bu radiyasiyanın udulma və buraxılma proseslərinin sadəcə bir tərəfidir və bunun radiyasiyaya heç bir əlaqəsi yoxdur. Əslində o özünün kvant hipotezini bir elmi kəşfdən daha çox riyazi «hiylə» adlandırır. Lakin 1905-ci ildə Albert Eynşteyn məhz Plankın kvant hipotezinə real şəkildə əsaslanaraq fotoelektrik hadisəsini izah edə bilir. Fotoelektrik effekti müəyyən materialların üzərinə işıq şüaları salmaqla həmin materialdan elektronların sıxışdırılıb çıxarılması hadisəsidir. Eynşteyn 1921-ci ildə məhz bu işinə gorə Nobel mükafatına layiq görülmüşdür.

Eynşteyn bir qədər də irəli gedərək, elektromaqnit dalğasının (məsələn işıq) oz tezliyindən asılı olan diskret enerji kvantalarına malik fiziki hissəcik və ya zərrəcik (sonradan foton adlandırılmışdır) kimi təsvirinin mümkünlüyünü irəli sürmüşdür.

Kvant mexanikasının esasları 20-ci əsrin ilk yarısında Maks Plank, Nils Bor, Verner Heyzenberq, Lui de Broyl, Artur Kompton, Albert Eynşteyn, Ervin Şrödinger, Maks Born, Con fon Neyman, Pol Dirak, Enriko Fermi, Volfqanq Pauli, Maks von Laue, Friman Dayson, Devid Hilbert, Vilhelm Veyn, Şatendranat Boze və digərləri tərəfindən qoyulmuşdur. Nils Borun Kopenhagen interpretasiyası kvant mexanikasının əsas ifadəsi (izahı) kimi qəbul olunur.

1920-ci illərin ortalarında kvant mexanikasında baş verən irəliləyişlər onun atom fizikasının əsas standart ifadəsi kimi qəbuluna gətirib çıxardı. 1925-ci ilin yayında Bor və alman fiziki Heyzenberq köhnə kvant mexanikasına son qoyan məqaləni nəşr etdirdilər. Bəzi proses və təcrübələrdə özlərini hissəcik kimi aparmalarını nəzərə alaraq, işıq kvantasına foton adı verildi (1926-cı ildə). Eynşteynin 1905-ci ildə işığa dair irəli sürdüyü çox sadə postulatlardan sonradan kəskin mübahisələr, nəzəriyyyələr və təcrübələrə gətirib çıxaran yeni Kvant Mexanikası nəzəriyyəsi doğdu. Bu nəzəriyyə ilkin illərdə amansız müqavimətə rast gəlsə də 1927-ci ildə 5-ci Solvey Konfransında yekdilliklə qəbul olunmuşdur.

1930-cu ilə qədər kvant mexanikası Devid Hilbert, Pol Dirak və Con fon Neyman tərəfindən müşahidə konsepsiyasına, bizim reallığa dair biliklərimizin statistik təbiətinə və «müşahidəci» yə dair fəlsəfi spekulyasiyalara daha böyük diqqət ayrılmaqla daha da təkmilləşdirildi. Bu nəzəriyyə sonradan kvant kimyası, kvant elektronikası, kvant optikası və kvant informasiya elmləri, həmçinin simlər nəzəriyyəsi və kvant qravitasiyası nəzəriyyələrinə yol açdı. O eyni zamanda elementlərin müasir dövrü sisteminin bir çox məsələlərinə aydınlıq gətirdi. Kvant mexanikası eyni zamanda atomların kimyəvi rabitələr əmələ gətirdikdə özlərini necə aparmaqları və həmçinin komputer yarımkeçiricilərində elektronların axını hadisələrini izah etdi və beləliklə müasir texnologiyalarda necə mühüm yer tutduğunu bərqərar etdi.

Kvant mexanikası atom miqyasında olan zərrəcikləri izah etmək üçün irəli sürülsədə hal hazırda onnan superkeçirilər ve superfluidlər kimi makrodünyamıza aid fiziki proseslərin izahında da istifadə olunur.

Kvant sözü Latın dilindən tərcümədə «neçə», «nə qədər» vəya «nə ölçüdə» kimi tərcümə olunur. Kvant mexanikasında kvant sözü ətalətdə olan atomun enerjisi kimi müəyyən fiziki kəmiyyətlərə şamil olunan diskret vahidə istinadən istifadə olunur. Mikrozərrəciklərin diskret enerjiyə malik dalğa xüsusiyyətinə malik olmasının kəşfi fizikanın kvant mexanikası adlanan atom və subatom sistemlərlə məşğul olan bölməsinin yaranmasına səbəb oldu.

Kvant mexanikası atom miqyaslarında və bundan da kiçik ölçülərdə olan fiziki sistemlərin başa düşülməsində həlledici rol oynayır. Əgər atomun fiziki təbiəti yalniz klassik fizika qanunları ilə izah olunsaydı, o zaman elektronlar nüvə ətrafında fırlana bilməyəcəkdi, çünki elektron fırlandıqca dairəvi hərəkətdə olduqlarına görə radiyasiya buraxırlar. Bu isə öz növbəsində elektronların enerji itkisi nəticəsində gec-tez nüvə ilə toqquşmasına gətirib çıxaracaqdır. Odur ki, klassik fizika atomların stabilliyini izah edə bilmədi. Əvəzində, elektronların qeyri-müəyyən, qeyri-deterministik, ehtimalı (probabilisktik və ya statistik) dalğa-zərrəcik orbitlərində nüvə ətrafında hərəkəti nəzəriyyəsi irəli sürüldü ki, bu da klassik fizika və elektromaqnetizmin ənənəvi fərziyyələrini alt-üst etdi.

Kvant mexanikası ilk illərdə ümumilikdə atomun daha təkmilizahı və təsviri, xüsusi ilə də eyni kimyəvi elementin müxtəlif izotopları tərəfindən buraxılan işıq spektrindəki fərqlərini izah etmək məqsədilə irəli sürülmüşdür Qısa şəklidə ifadə etsək, atomun kvant mexanika modeli klassik mexanika ve elektromaqnetizm nəzəriyyələrinin iflasa uğradığı sahələrdə mükəmməl nəticələr verdi.

Ümumilikdə götürsək, kvant mexanikası klassik mexanikanın izah edə bilmədiyi 4 əsas fiziki hadisələrin izahına yönəlib:

  • Bəzi fiziki xassələrin kvantizasiyası
  • Kvant dolaşıqlığı
  • Qeyri-müəyyənlik prinsipi
  • Dalğa-zərrəcik ikiliyi (və ya dualizmi)