Nisbilik prinsipi

Vikipediya, azad ensiklopediya
Jump to navigation Jump to search

Fizikada nisbilik prinsipi fizika qanunlarını təsvir edən tənliklərin bütün məqbul hesablama sistemlərində eyni formaya malik olduğunu tələb edir. Məsələn, xüsusi nisbilik çərçivəsində Maksvell tənlikləri bütün inersial hesablama sistemlərində eyni formaya malikdir. Ümumi nisbi nəzəriyyəsi çərçivəsində Maksvell tənlikləri və ya Eynşteyn sahə tənlikləri ixtiyari hrsablama sistemlərində eyni formaya malikdir. İstər biləvasitə (Nyuton mexanikasında olduğu kimi), istərsə də açıq şəkildə (Albert Eynşteynin xüsusi nisbilikümumi nisbilik nəzəriyyəsində olduğu kimi) elmdə bir neçə nisbilik prinsipi uğurla tətbiq edilmişdir.

Əsas anlayışlar[redaktə | mənbəni redaktə et]

Elmin əksər bölmələrində nisbiliyin müəyyən prinsipləri geniş şəkildə qəbul edilmişdir. Ən geniş yayılanlardan biri hər hansı təbiət qanununun hər zaman eyni olması inamıdır və elmi araşdırmalar ümumiyyətlə təbiət qanunlarının onları ölçən şəxsdən asılı olmayaraq eyni olduğunu fərz edir. Bu cür prinsiplər ən fundamental səviyyələrdə elmi araşdırmaya daxil edilmişdir.

İstənilən nisbilik prinsipi təbiət qanununda simmetriya təyin edir, yəni qanunlar bir müşahidəçiyə digərinə göründüyü kimi eyni görünməlidir. Noter teoremi adlanan nəzəri nəticəyə görə, hər hansı belə simmetriya saxlanma qanununu ifadə edir.[1][2] Məsələn, müxtəlif vaxtlarda iki müşahidəçi eyni qanunları görürsə, enerji adlanan kəmiyyət saxlanır. Bu baxımdan, nisbilik prinsipləri təbiətin necə davrandığına dair sınaqdan keçirilə bilən proqnozlar verir və təkcə elm adamlarının qanunları necə yazması barədə ifadələr deyildir.

Xüsusi nisbilik prinsipi[redaktə | mənbəni redaktə et]

Xüsusi nisbilik nəzəriyyəsinin birinci postulatına görə: [3]

Xüsusi nisbilik pirinsipi: Elə bir K koordinat sistemi seçilir ki, fiziki qanunlar bu sistemdə özlərinin ən sadə frmasını qoruyur, həmin qanunlar K sisteminə nəzərən bərabərsürətli düzxəttli hərəkət edən K' sistemində də öz formasını qoruyur.
— Albert Einstein: The Foundation of the General Theory of Relativity, Part A, §1

Bu postulat inersial hesablama sistemini təyin edir.

Xüsusi nisbilik prinsipinə görə, fizika qanunları hər inersial hesablama sistemində eyni olmalıdır, lakin onlar qeyri-inersial hesablama sistemlərində dəyişiklik göstərə bilər. Bu prinsip həm Nyuton mexanikasında, həm də xüsusi nisbilik nəzəriyyəsində istifadə olunur. Bu prinsipin təsiri o qədər güclü oldu ki, Maks Plank "prinsipi" "nəzəriyyə" adlandırdı.[4]

Prinsip tələb edir ki, fizika qanunları sükunətdə olan cisimə görə necədirsə, sabit sürətlə hərəkət edən hər hansı bir cisim üçün də elə olsun. Bunun nəticəsi odur ki, inersial hesablama sistemindəki müşahidəçi kosmosda mütləq sürəti və ya hərəkət istiqamətini təyin edə bilməz və yalnız hansısa başqa obyektə nisbətən sürət və ya istiqamət haqqında danışa bilər.

İstinadlar[redaktə | mənbəni redaktə et]

  1. Deriglazov, Alexei. Classical Mechanics: Hamiltonian and Lagrangian Formalism. Springer. 2010. səh. 111. ISBN 978-3-642-14037-2. Extract of page 111
  2. Schwarzbach, Bertram E.; Kosmann-Schwarzbach, Yvette. The Noether Theorems: Invariance and Conservation Laws in the Twentieth Century. Springer. 2010. səh. 174. ISBN 978-0-387-87868-3. Extract of page 174
  3. Einstein, A., Lorentz, H. A., Minkowski, H., and Weyl, H. Arnold Sommerfeld (ed.). The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity. Mineola, NY: Dover Publications. 1952 [1923]. səh. 111. ISBN 0-486-60081-5.
  4. Weistein, Galina. Einstein's Pathway to the Special Theory of Relativity. Cambridge Scholars Publishing. 2015. səh. 272. ISBN 978-1-4438-7889-0. Extract of page 272