Miller indeksləri
Bu məqaləni vikiləşdirmək lazımdır. |
Miller indeksləri-üç tam ədəddən ibarət, kristal qəfəsdə atom müstəvilərini və istiqamətləri işarə etmək üçün istifadə olunan bir simvol[1][2][3][4]
Bazis vektorları olan bir qəfəs üçün Miller indekslərini təyin edək. Bunun üçün kordinat oxlarını uyğun olaraq vektorları boyunca və qəfəsin ixtiyari bir düyün nöqtəsini koordinat başlanğıcı olaraq seçək.
Belə bir koordinat sistemində, koordinat oxlarından və parçaları kəsən bir müstəvi aşağıda Şəkil1-də ştrixlənmiş olaraq göstərilmişdir. Bu, miller indekslərini təyin etmək istədiyimiz atom müstəvisi olsun
Kristalloqrafiyada qəbul olunmuş qəfəs sabitləri -lərin köməyiylə parçalarının yerinə adsız və ədədlərini alıb, onların tərs qiymətlərini şəkildə yazaraq atom müstəvisinin Miller indekslərini əldə etmək olar. Göstərmək olar ki, bu şəkildə təyin olunmuş Miller indekslərini həmişə üç tam ədədlə ifadə etmək mümkündür və onun şəklində yazılması qəbul edilmişdir[1][2][3]. Doğrudan da nisbətlərini alıb onları üç ən kiçik tam ədədlərin nisbətinə gətirərək, şəkildə yazmaq olar.
Məsələn, tutaq ki atom müstəvisi 1istiqamətindəki oxdan parçasınə və istiqamətlərində isə, uyğun olaraq parçalarını kəsmmişdir. O zaman belə bir müstəvinin Miller indeksləri, qəbul olunan qaydada , yəni üç tam ədədolacaq.
Sadə kubik qəfəsdə bir neçə atom müstəvilərinin Miller indeksləri Şəkil2-də verilmişdir.
Əgər parçalarından hər hansı biri mənfi olarsa, o işarə uyğun Miller indeksinin üstündə yazılır. Deyək ki, istiqamətlərində uyğun olaraq parçaları kəsilmişdir. O halda, bu atom müstəvisinin Miller indeksləri şəklində yazılar.
Fiziki ekvivalent müstəvilərin Miller indeksləri kimi işarə olunur. Məsələn simvolu kubik qəfəsin altı elementar özəyi olan kubun üzündən keçən atom müstəvilərinin indekslərini göstərir.
Miller indekslərnin kristalloqrafyada və beləliklə bərk cisimlər fizikasında yerini və əhəmiyyətini müəyyən edən iki teorem haqqında söz açmaq yerinə düşər. Bir kristal qəfəsin uyğun tərs qəfəs bazis vektorları və tam ədədlər olmaqla tərs qəfəs köçürmə vektorları ilə atom müstəvilərinə baxaq.
Teorem1. Əgər isə vektoru atom müstəvisinə perpendikulyardır.
Teorem2. atom müstəviləri ailəsində iki qonşu müstəvi arasındakı məsafə bərabərdir.
Bu iki teorem (onları isbatsız veririk) bərk cisimlərin kristal quruluşunun təcrübi tədqiqat metodlarının əsasını təşkil edirlər. Xüsusiylə də məşhur Breqq formulu ikinci teoremin birbaşa nəticəsidir. Bu teoremin köməyi lə birbaşa qəfəs sabitlərini tapmaq olur. Məsələn kubuk qəfəslərdə müstəviləri üçün iki qonşu müstəvi arasındakı məsafə -tapaq. Bunun üçün -vektorunun ədəd qiymətini bilmək lazımdır:
Sadə kub üçün . Yəni ;
Burdan alınır ki, bu da kubik qəfəsin qəfəs sabitidir.
Miller indekslərinin tətbiqi əhəmiyyəti bununla bitmir. Rentgen şüalarının kristal qəfəsdən səpilməsi zamanı səpilən şüaların intensivliyi Miller indeksləriylə təyin olur[3]. Məsələn həcmə mərkəzləşmiş kubda miller indekslərinin cəmi tək ədəd olan müstəvilərdən səpilən şüaların intensivliyi sıfır olar.
Kristal qəfəsdə hər hansı bir düyündən (atomdan) keçən düz xətt üçün də üç tam ədəddən ibarət bir simvol yazmaq olur ki, ona da istiqamətin Miller indeksləri deyilir. İstiqamətin Miller indeksləri üçün, parçaları olaraq, uyğun istiqamətin ixtiyari bir nöqtəsinin koordinat oxlarına proyeksiyalarını -lərə bölərək əldə edilən üç adsız ədəd şəkildə yazılır. Onların da nisbəti ən kiçik tam ədədlər olan -ə gətirilir və simvolu əldə edilir. Məsələn kubik qəfəsdə vektoru istiqamətinin Miller indeksini yazaq. Bu istiqamətdə ixtiyari bir nöqtənin koordinat oxlarına proyeksiyaları və istiqamətlərinə sıfır, istiqamətinə isə olsun. Onda bu istiqamətin Miller indeksləri olacaq.
İstiqamətində Miller indekslərindən hər hansı biri mənfi isə o işarə uyğun indeksin üstündə yazılır. Məsələn simvolu seçilmiş koordinat sistemində koordinatları olan bir nöqtədən keçən düz xəttin Miller indeksləridir- .
Fiziki ekvivalent istiqamətlər şəklində işarə olunurlar. Məsələn kubik qəfəsdə hər hansı bir düyündən keçən və vektorlarına paralel istiqamətlər olaraq-üçü müsbət və üçü mənfi olmaqla altı istiqamətin Miller indekslərinin məcmusunu göstərir.
Burada kubik qəfəslər üçün atom müstəvisiylə istiqamətinn bir-birinə perpendikulyar olduğunu qeyd etməkdə fayda var. Bu xassə digər kristal qəfəslər üçün ümumiyyətlə doğru deyil.
Miller indekslərinin bir xassəsini də qeyd edək: müstəvinin və ya istiqamətin Miller indeksləri eyni zamanda həmin müstəvidə (istiqamətdə) səthin vahid sahəsində (vahid uzunluğunda) yerləşən atom sayını da (başqa sözlə atom sıxlığını) göstərir[4]. Məsələn simvolu kubik qəfəsdə vektoruna perpendikulyar olan atom müstəvisidir və bu müstəvi elementar özəyi ölçülü kvadrat olan ikiölçülü bir qəfəsdir. O zaman hər elementar özəkdə bir atom yer aldığına görə atom sıxlığı olaraq əldə edilir (burada elementar özəyin, yəni kvadratın sahəsidir), simvolu isə vektoruna paralel və vektoruna perpendikulyar atom müstəvisinin Miller indeksi, bu müstəvi isə tərəfləri və olan kvadrat üzərində qurulmuş ikiölçülü bir qəfəsdir. Deməli bu qəfəsin elementar özəyinin sahəsi və atom sıxlığı -a bərabərdir. Beləliklə , atom müstəviləri üçün atom sıxlığını (sadə qəfəslər üçün) aşağıdakı kimi yazmaq olar:
Yəni hökm etmək olar ki, atom müstəvisində atom sıxlığı vuruğu ilə mütənasibdir. Başqa sözlə Miller indekslərinin ən kiçik qiymətlərinə atom sıxlığı böyük olan müstəvilər uyğun gəlir[4].
Ədəbiyyat
[redaktə | vikimətni redaktə et]- M. Əsgərov. "Bərk Cisimlər Fizikası", Bakı 2001.*
- B. M. Əsgərov. "Bərk Cisimlərin Nəzəriyyəsi", Bakı 2013.*
- А. И. Ансельм "Введение в теорию полупроводников", Москва 1978.*
- Дж. Займан "Принципы теории твердого тело" издательство Мир 1966*
İstinadlar
[redaktə | vikimətni redaktə et]- ↑ 1 2 http://elibrary.bsu.az/books_aysel/N_355.pdf[ölü keçid].
- ↑ 1 2 http://elibrary.bsu.az/books_rax/N_108.pdf Arxivləşdirilib 2017-11-18 at the Wayback Machine.
- ↑ 1 2 3 http://ikfia.ysn.ru/images/doc/Solid_State_Physics/Anselm1978ru.pdf[ölü keçid].
- ↑ 1 2 3 http://booksshare.net/books/physics/zayman-dj/1966/files/principiteoriitverdogotela1966.pdf Arxivləşdirilib 2018-12-22 at the Wayback Machine.