Çoxluqlar nəzəriyyəsi

Vikipediya, açıq ensiklopediya
Keçid et: naviqasiya, axtar

Çoxluqlar nəzəriyyəsiriyaziyyatın çoxluqların ümumi xassələrini öyrənən bölməsi. Bir çox riyazi fənlər, o cümlədən cəbr, riyazi analiz, ölçü nəzəriyyəsi, stoxastik və topologiya çoxluq nəzəriyyəsinə əsaslanırlar. Əsası alman riyaziyyatçısı Qeorq Kantor tərəfindən qoyulmuşdur.


Anlayışlar[redaktə | əsas redaktə]

Hər hansı bir çoxluğu təşkil edən obyektlərə bu çoxluğun elementi deyilir. Çoxluqlar böyük hərflərlə, çoxluğun elementləri isə uyğun kiçik hərflərlə işarə olunur.

Çoxluq nəzəriyyəsində münasibəti o deməkdir ki, çoxluğunun elementidir. Bunun inkarı isə kimi işarə edililirlər. Bu münasibət isə onu göstərir ki, çoxluğunun elementi deyil.

Alt Çoxluğu[redaktə | əsas redaktə]

A çoxluğu B-nin altçoxluğudur

Bir çoxluq digər çoxluğun o vaxt altçoxluğu adlanır ki, çoxluğuna aid olan ixtiyari element həm də çoxluğunun elementi olsun.

o zaman -nin üstçoxluğu adlanır. Formal olaraq:

.

Bərabərlik[redaktə | əsas redaktə]

İki çoxluq o zaman bərabərdirlər ki, onlar eyni elementlərə malik olsunlar.

Bu analyış çoxluq nəzəriyyəsinin əsası hesab olunur. Formal olaraq belə ifadə olunur:

Boş çoxluq[redaktə | əsas redaktə]

Tərkibində heç bir element olmayan çoxluq boş çoxluq adlanır. O və ya ilə işarə olunur. Bərabərlik qanunundan alınır ki, yalnız bir nir boş çoxluq mövcuddur. Digər boş çoxluqlar elə həmin elementləri əhatə edirlər, yəni bərabərdirlər. Uyğun olaraq: müxtəlif olurlar. Çünki sonuncu çoxluq birincidən fərqli olan elementə sahibdir. Boş çoxluq hər bir çoxluğun alt çoxluğudur. Boş çoxluğu həmçinin aşağıdakı kimi də ifadə etmək olar:

- A çoxluğunun boş alt çoxluğudur. Aşkar

Çoxluqların kəsişməsi[redaktə | əsas redaktə]

-nin kəsişmə çoxluğu

Bir qeyri-xətti çoxluğu verilir. Bu çoxluqdan yaranmış kəsişmə çoxluğu A və B çoxluqlarına aid olan elemntlərdən təşkil olunur. Daha dəqiq desək, A və B çoxluqlarının kəsişməsindən yaranan çoxluğun elementləri, bu hər iki çoxluğun altçoxluğudur. Formal olaraq:

.

Çoxluqların birləşməsi[redaktə | əsas redaktə]

.
 və   çoxluqlarından yaranmış birləşim çoxluğu