Düzbucaqlı üçbucaq

Vikipediya, azad ensiklopediya
Jump to navigation Jump to search
Düzbucaqlı üçbucaq

Düzbucaqlı üçbucaq—bucaqlarından biri düz bucaq (90⁰) olan üçbucağa deyilir[1].

Düzbucaqlı üçbucaqda düz bucaq qarşısındakı tərəf hipotenuz, ona bitişik tərəflər, yəni iti bucaqlar qarşısında duran tərəflər isə katetlər adlanır.

Pifaqor teoreminə görə düzbucaqlı üçbucaqda katetlərin kvadratları cəmi hipotenuzun kvadratına bərabərdir. a²+b²=c²

Katetləri bərabər olan düzbucaqlı üçbucaq bərabəryanlı düzbucaqlı üçbucaq adlanır.

Xüsusiyyətləri[redaktə | mənbəni redaktə et]

  • Düzbucaqlı üçbucağın iti bucaqlarının cəmi 90°-yə bərabərdir.
  • Düzbucaqlı üçbucağın xaricinə çəkilmiş çevrənin mərkəzi hipotenuzun orta nöqtəsidir.
  • Bərabəryanlı düzbucaqlı üçbucağın iti bucaqlarının hər biri 45°-yə bərabərdir.
  • Bərabəryanlı düzbucaqlı üçbucaqda hipotenuz katetin kök altında iki mislinə bərabərdir[2].
  • Düzbucaqlı üçbucaqda 30 dərəcəli bucaq qarşısında duran katet hipotenuzun yarısına bərabərdir.
  • Düzbucaqlı üçbucağın xaricinə çəkilmiş çevrənin radiusu hipotenuzun yarısına bərabərdir. R=c/2
  • Düzbucaqlı üçbucağın daxilinə çəkilmiş çevrənin radiusu r=(a+b-c)/2 düsturu ilə hesablanır (burada r-düzbucaqlı üçbucağın daxilinə çəkilmiş çevrənin radiusu, a və b katetlər, c-hipotenuzdur).
  • İti bucaqları 30°-60° olan düzbucaqlı üçbucaqda 60°-li bucaq qarşısındakı katet digər katetden kök altında 3 dəfə böyükdür.
  • Düz bucaqdan hipotenuza çəkilmiş hündürlüyün kvadratı onun hipotenuz üzərində böldüyü parçaların hasilinə bərabərdir.

Sahəsi[redaktə | mənbəni redaktə et]

  1. Düzbucaqlı üçbucağın sahəsi katetlərinin hasilinin yarısına bərabərdir: S=a*b/2
  2. Heron düsturuna görə düzbucaqlı üçbucağın sahəsi kök altında onun yarımperimetri ilə hər bir katetin ayrı-ayrılıqda fərqinin hasilinə bərabərdir[3].
  3. Düzbucaqlı üçbucağın sahəsi onun daxilinə çəkilmiş çevrənin radiusu ilə bu radiusun hipotenuz ilə cəminin hasilinə bərabərdir[3].
  4. Düzbucaqlı üçbucağın sahəsi onun daxilinə çəkilmiş çevrənin hipotenuza toxunma nöqtəsində onu böldüyü hissələrin uzunluqları hasilinə bərabərdir.[3]
  5. Bərabəryanlı düzbucaqlı üçbucağın sahəsi kvadratın sahəsinin yarısına bərabərdir. S=a²/2

Triqonometrik nisbətlər[redaktə | mənbəni redaktə et]

  • Düzbucaqlı üçbucaqda iti bucağın sinusu bu bucağın qarşısındakı katetin hipotenuza nisbətinə deyilir[4].
  • Düzbucaqlı üçbucaqda iti bucağın kosinusu bu bucağa bitişik katetin hipotenuza nisbətinə deyilir[4].
  • Düzbucaqlı üçbucaqda iti bucağın tangensi bu bucağın qarşısındakı katetin bucağa bitişik katetə nisbətinə deyilir[4]. Buradan alırıq ki:

  • Düzbucaqlı üçbucaqda iti bucağın kotangensi bu bucağa bitişik katetin bucağın qarşısındakı katetə nisbətinə deyilir[4]. Buradan alırıq ki:

İstinadlar[redaktə | mənbəni redaktə et]

  1. "Definition" (ingilis). learnalberta.ca. İstifadə tarixi: 7 may 2021.
  2. "Special Right Triangles" (ingilis). calculator.net. İstifadə tarixi: }7 may 2021.
  3. 1 2 3 "Düzbucaqlı üçbucağın sahəsi" (az.). jsoft.ws. İstifadə tarixi: 2021-04-21.
  4. 1 2 3 4 "Right Triangle Trigonometry" (eng). math.libretexts.org. Jan 17, 2020. İstifadə tarixi: 2021-02-04.