Natural ədədlər

Natural ədədlər — sayma və sıralama üçün istifadə olunan ədədlərə deyilir. Natural ədələr çoxluğu simvolu ilə ifadə olunur, . Bəzi ədəbiyyatda, adətən natural ədədlərin Çoxluqlar Nəzəriyyəsindən tərifində da natural ədəd hesab olunur. Natural Ədədlər sayma üçün istifadə edildikdə kardinal ədədlər, sıralama üçün istifadə edildikdə ordinal ədədlər adlandırılır.
Natural Ədədlərin Tərifi
[redaktə | vikimətni redaktə et]Natural ədədlər Peano aksiomları ilə aşağıdakı qaydada tərif edilir:
- . natural ədəddir.
- Hər bir natural ədədin ardıcılı natural ədəddir (burada ardıcıllıq funksiyasıdır).
- 1 heç bir natural ədədin ardıcılı deyil.
- Əgər iki natural ədədin ardıcılı bərabərdirsə, bu natural ədədlər bərabərdir. Digər sözlə, (1-dən fərqli) hər bir natural ədəd yalnız bir natural ədədin ardıcılıdır. funksiyası inyektiv funksiyadır.
- Hər hansı bir ifadə, teorem, düstur və s. (a) 1 üçün doğrudur və (b) üçün doğru olduqda üçün də doğrudur, şərtlərini ödəyir. Bu halda, ifadə bütün natural ədədlər üçün doğrudur. (Riyazi İnduksiya)
Cəm
[redaktə | vikimətni redaktə et]- ,
- . (və ya )
Hasil
[redaktə | vikimətni redaktə et]- ,
- .
Ardıcıllıq
[redaktə | vikimətni redaktə et]Hər hansı bir və natural ədədləri üçün şərtini ödəyən natural ədədi varsa, .
- .
- .
Tək və cüt ədədlər
[redaktə | vikimətni redaktə et]Cüt ədədlər — sonu 0, 2, 4, 6 və 8 rəqəmlərindən biri ilə qurtaran natural ədədlərə cüt ədədlər deyilir.
Tək ədədlər — sonu 1, 3, 5, 7 və 9 rəqəmlərindən biri ilə qurtaran natural ədədlər tək ədədlər deyilir.
Natural ədədlər cədvəli
[redaktə | vikimətni redaktə et]1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |||
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | ||
20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | ||
30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | ||
40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | ||
50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | ||
60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | ||
70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | ||
80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | ||
90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | ||
100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | ||
110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | ||
120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | ||
130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | ||
140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | ||
150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | ||
160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | ||
170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | ||
180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | ||
190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | ||
200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | ||
210 | 220 | 230 | 240 | 250 | 260 | 270 | 280 | 290 | |||
300 | 400 | 500 | 600 | 700 | 800 | 900 | |||||
1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 | 9000 | |||
10000 | 20000 | 30000 | 40000 | 50000 | 60000 | 70000 | 80000 | 90000 | |||
100000 | 1000000 | 10000000 | 100000000 | ||||||||
1000000000 | 10000000000 | 100000000000 | 1000000000000 |
Ədədin bölənləri və bölünənləri
[redaktə | vikimətni redaktə et]Ədədin böləni
n- natural ədədinin bölündüyü hər bir natural ədəd n- böləni adlanır.
Məsələn: 12 — nin bölənləri —> 1,2,3,4,6,12
Ədədin bölünəni
n-natural ədədinə qalıqsız bölünən hər bir natural ədəd n- in bölünəni adlanır.
Bölünmə əlamətləri
[redaktə | vikimətni redaktə et]- Sonu "0" yaxud cüt rəqəmlə qurtaran natural ədədlər 2-yə qalıqsız bölünür.
- Rəqəmlərinin cəmi 3-ə bölünən natural ədədlər 3-ə qalıqsız bölünür.
- Natural ədədin son iki rəqəmi sıfırdırsa, və ya son iki rəqəminin əmələ gətirdiyi ədəd 4-ə bölünürsə, bu ədəd 4-ə qalıqsız bölünür.
- Sonu "0"- la yaxud "5"-lə qurtaran natural ədədlər 5-ə qalıqsız bölünür.
- Eyni zamanda 2-yə və 3-ə bölünən natural ədədlər 6-ya qalıqsız bölünür.
- Natural ədədin son üç rəqəmi sıfırdırsa, və ya son üç rəqəminin əmələ gətirdiyi ədəd 8-ə bölünürsə, bu ədəd 8-ə qalıqsız bölünür.
- Rəqəmləri cəmi 9-a bölünən natural ədədlər 9-a qalıqsız bölünür.
- Sonu "0"-la qurtaran bütün natural ədədlər 10-a qalıqsız bölünür.
- Eyni zamanda 2-ə və 3-ə bölünən (6-a bölünən) natural ədədlər 12-ə bölünür.
- Eyni zamanda 3-ə və 5-ə bölünən ədədlər 15-ə bölünür.
- Son iki rəqəmi 25, 50, 75 və 00 olan ədədlər 25-ə bölünür.
Sadə və mürəkkəb ədədlər
[redaktə | vikimətni redaktə et]Yalnız 1-ə və özünə bölünən ədədlərə sadə ədədlər deyilir.
Məsələn: 2;3;5;7;11;13;17;19…
İkidən çox böləni olan ədədlərə mürəkkəb ədədlər deyilir.
Məsələn: 4;6;8;9;10;12;14;16 və s. 2-dən başqa bütün cüt ədədlər mürəkkəb hesab olunur.
1 nə sadə, nə də mürəkkəb ədəddir.
Mürəkkəb ədədin sadə vuruqların hasili şəklində göstərilməsi sadə vuruqlara ayırma adlanır.
Məsələn: 120=2×2×2×3×5 və ya 120=2³×3¹×5¹
Qarşılıqlı sadə ədədlər
[redaktə | vikimətni redaktə et]Ortaq sadə vuruqları olmayan ədədlərə qarşılıqlı sadə ədədlər deyilir.
- Ardıcıl iki natural ədədlər qarşılıqlı sadədir.
- Ardıcıl iki tək natural ədəd qarşılıqlı sadədir.
- 1 istənilən ədədlə qarşılıqlı sadədir.
Ən böyük ortaq bölən (ƏBOB) və ən kiçik ortaq bölünən (ƏKOB)
[redaktə | vikimətni redaktə et]a və b natural ədədlərinin hər ikisinin bölündüyü ən böyük natural ədədə a və b-nin ən böyük ortaq böləni deyilir və ƏBOB (a;b) kimi işarə olunur.
ƏBOB (a;b)-ni tapmaq üçün:
- a və b sadə vuruqlarına ayrılıb qüvvət kimi göstərilir.
- Ortaq vuruqlardan qüvvəti kiçik olanlar seçilir.
- Onların hasili tapılır.
a və b natural ədədlərinin hər ikisinə bölünən ən kiçik natural ədədə a və b-nin ən kiçik ortaq bölünəni deyilir və ƏKOB(a;b) kimi işarə olunur.
ƏKOB və ƏBOB-a aid əsas düsdurlar
ƏBOB(a;b)•ƏKOB(a;b)=ab
ƏKOB (a;b)-ni tapmaq üçün
- a və b sadə vuruqlarına ayrılıb qüvvət kimi göstərilir.
- Bütün sadə vuruqlardan qüvvəti böyük olanlar seçilir.
- Onların hasili tapılır.
Ədəbiyyat
[redaktə | vikimətni redaktə et]- Феферман С. Числовые системы. Основания алгебры и анализа. — 1971. — 445 с.
Riyaziyyat haqqında olan bu məqalə bu məqalə qaralama halındadır. Məqaləni redaktə edərək Vikipediyanı zənginləşdirin. |