Triqonometriya

Vikipediya, açıq ensiklopediya
Keçid et: naviqasiya, axtar
θ bucağının bütün triqonometrik funksiyaları onu əhatə edən, mərkəzi O olan çevrədə qurula bilər.

Triqonometriya (yunanca τρίγωνο trígono „üçbucaq" və μέτρον métron „ölçü") - həndəsənin və bununla riyaziyyatın bir hissəsi olub üçbucaqların tərəflərinin uzunluğu və bucaqları arasındakı münasibətləri öyrədir. Əgər məsələlərin həlli müstəvidə baxılarsa onda bu müstəvi triqonometriyası adlanır, fəzada baş verənlərlə sferik triqonometriya və hiberbolik triqonometriya məşğul olur.

Triqonometriyanın əsas vəzifəsi üçbucağın verilmiş üç parametri (yan tərəfi, bucağı, meridian və s.) əsasında yerdə qalanlarını təyin etməkdən ibarətdir. Köməkçi vasitə kimi triqonometrik funksiyalardan sin, cos, tan, cot, seccsc tətbiq edilir. triqonometrik hesabatlar həmçinin daha mürəkkəb həndəsi fiqurlara (poliqonlar, stereometriyadakı fiqurlar) da tətbiq edilə bilər.

Düzgün üçbucaqlıda triqonometriya[redaktə]

Triqonometrik məsələlərin həlli düzgün üçbucaqlı nisbətən sadədir. Üçbucağın bucaqlarının cəmi 180° olduğundan üçbucaqlarda düzbucaq ən böyük bucaqdır. Onun qarışısında ən böyük tərəf – hipotenuz durur. Yerdə qalan iki qısa tərəf katetlərdir.

Düzgün üçbucaqlı üçün bəllidir:

  • Verilmiş bucağın Sinusu =Qarşı katet/Hipotenuz
  • Verilmiş bucağın Kosinusu = Qonşu katet/Hipotenuz
  • Verilmiş bucağın Tangensi = Qarşı katet/Qonşu katet
  • Verilmiş bucağın Kotangensi = Qonşu katet/Qarşı katet
  • Verilmiş bucağın Sekansı = Hipotenuz/Qonşu katet
  • Verilmiş bucağın Kosekansı = Hipotenuz/Qarşı katet

Buradan güründüyü kimi, üçbucağın yalnız bucaqlarının qiymətləri verilərsə onda onun tərəflərini tapmaq çətinlik yaradır. Belə ki, eyni bucqlara malik üçbucaqların tərəfləri müxtəlif uzunluğa malik ola bilər. Ancaq bucaqları eyni olan üçbucalar oxşardırlar.

Triqonometrik funksiyaların vahid çevrədə təyini[redaktə]

Yuxarıda göstərilən təyinatlar yalnız bucağın qiymətinin 90°-dən kiçik olduğu halda tətbiq oluna bilərlər. Radiusu vahidə (1) bərabər olan çevrə triqonometriyanın imkanlarını genişləndirməyə imkan verir. Verilmiş bucağa çevrə üzərində bir nöqtə göstərilir. Dekart koordinat sistemində bu nöqtənin x koordinatı bucağın kosinusuna, z koordinatı isə sinusa bərabər olur.


Yuxarıda sinus və kosinus haqqında verilmiş düsturlar 90°-dən də artıq bucaqlara aid edilə bilir. Çevrədən göründüyü kimi bucaqlar 90°-180°, 180°-270°, 270°-360° arasında dəyişdikcə triqonometrik funksiyaların da işarələri dəyişir.

Əlavə olaraq aşağıdakı 4 triqonometrik funskiya daxil edilir:

\tan\alpha = \frac{\sin\alpha}{\cos\alpha}
\cot\alpha = \frac{1}{\tan\alpha} = \frac{\cos\alpha}{\sin\alpha}
\sec\alpha = \frac{1}{\cos\alpha}
\csc\alpha = \frac{1}{\sin\alpha}

Ümumi çevrədə trionometriya[redaktə]

Verilmiş istənilən çevrə daxilində də triqonometrik asılılıqlar təyin edilib. Bu asılılıqlar naməlum tərəfin uzunluğunu və ya bucağın qiymətini təyin etməyə imkan verir. Ən geniş yayılmışı sinuslar və kosinuslar teoremdiir.

Sinuslar teoremi aşağıdakı kimi ifadə edilir:

\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma}

Bundan istifadə etmək üçün gərək iki tərəf və onların qarışısında yerləşən bucaqdan biri, və ya iki bucaq və bir tərəf məlum olsun.

a^2 \, = \, b^2 + c^2 - 2 b c \cos\alpha
b^2 \, = \, a^2 + c^2 - 2 a c \cos\beta
c^2 \, = \, a^2 + b^2 - 2 a b \cos\gamma

Tətbiq sahələri[redaktə]

Triqonometriya bir çox sahələrdə əsas rol oynayır. Geodeziyada verilmiş nöqtələri birləşdirməklə yaradılan topologiyada trianqulyasiyadan sitifadə edilir. Astronomiyada bu üsulla planetlərin arasındakə məsafələr təyin edilir. Triqonometriya eynilə təyyarələrin və gəmilərin naviqasiya edilməsində sferik stronomiya adı ilə tətbiq edilir. Ulduz və planetlərin mövqelərini də bu üsulla təyin etmək mümkündür.

Fizikada sinus və kosinus funksiyalarından rəqslər və dalğaların riyazi təsvir olunmasında istifadə olunur. Dəyişən cərəyanda gərginliyinin və cərəyan şiddətinin vaxtdan asılı olaraq dəyişməsi də triqonometrik funksiyların köməyi ilə təsvir edilir.

Mənbə[redaktə]

  • Wolfgang Pauli: Lehrbuch und Übungsbuch Mathematik: Bd. 2 Planimetrie, Stereometrie und Trigonometrie der Ebene. 1991, ISBN 3-446-00755-5, KNO-NR: 04 41 57 51

Həmçinin bax[redaktə]