Matris

Vikipediya, açıq ensiklopediya
Keçid et: naviqasiya, axtar

Matris və ya MatriksXətti cəbr anlayışı olub, n sayda sıra və m sayda sütundan ibarət olan rəqəmlər cədvəlidir. Matrisi Sıra VektorlarıSütun Vektorları yaradır. Matris cədvəlinin hər bir elementinə Matris Komponenti deyilir.

"Matris" bir riyazi anlayış kimi ilk dəfə 1850-ci ildə Ceyms Cosef Silvester tərəfindən formalaşdırılmışdır. Matrislərin quruluşu onları xətti bərabərliklər kimi ifadə etməyə kömək edir.

və ya

Matrislərin xassələri və onlar üzərində riyazi əməllər[redaktə | əsas redaktə]


m × n ölçülü A matrisi ( ai,j, bütün 1 ≤ im və 1 ≤ jn) adətən A[i,j] kimi qeyd olunur ki, bu da öz növbəsində deməkdir.

Nümunə:

A matrisi:

4×3 ölçülü matrisdir. A[2,3]/(a2,3)elementi 7-yə bərabərdir.


R matrisi

1×9 ölçülü matris və ya 9 elementli sıra vektorudur.

Kvadrat Matris[redaktə | əsas redaktə]

Sıralarının sayı, sütunlarının sayına bərabər (m × m) olan matrisə kvadrat matris deyilir.

Nümunə: Əgər m = 3 olarsa, onda


Matrislərin skalyar hasili[redaktə | əsas redaktə]

A matrisi verilmişdir və a c bir ədəddir, cA skalyar hasili c ədədinin A matrisinin hər bir elementi ilə hasilinə bərabərdir.

Nümunə:


Matrislərin toplanılması[redaktə | əsas redaktə]

m × n ölçülü AB matrisləri verilmişdir, onların cəmi olan A + B matrisinin hər bir uyğun elementi, A matrisinin uyğun elementi ilə B matrisin uyğun elementininin cəminə bərabərdir:

(A + B)[i, j] = A[i, j] + B[i, j] )

Nümunə:


Matrislərin vurulması[redaktə | əsas redaktə]

Fərz edək ki, m × n ölçülü A və B matrisləri verilmişdir, onların hasilini bu cür ifadə etmək olar:


Nümunə:

Matrislərin hasili bu cür xassələrə malikdir:

  • (AB)C = A(BC)
  • (A + B)C = AC + BC
  • C(A + B) = CA + CB

Qeyd:Matrislər üçün kommutativlik xassəsi yaramır,ABBA.

Diaqonal anlayışı və vahid matris[redaktə | əsas redaktə]

Matris diaqonalı, matrisin birinci sağ(sol) sətr və sütun elementi ilə sonuncu sol(sağ) sətr və sütün elementini birləşdirən(uyğun olaraq sağ və sol diaqonal) ədədlər sırasına deyilir.

Məsələn, burada:

sağ(baş) diaqonal elementləri 1,0,7 və sol diaqonal elementləri 3,0,5 dir.

Vahid matris o matrisə deyilir ki, sağ(baş)diaqonalı elementləri 1, digər elemetlər 0 olsun. Kvadrat matris prinsipi zəruridir.

Determinant[redaktə | əsas redaktə]

İkili kvadrat matrisin determinantı aşağıda göstərildiyi kimi ifadə olunur.

Bu ifadəyə iki tərtibli determinant deyilir. Uyğun olaraq üç tərtibli matrisin determinantı aşağıdakı kimi yazılır.

https://wikimedia.org/api/rest_v1/media/math/render/svg/811f07136c6d3565a6dc5264e4371e8eab2dc207

Determinantı sıfra bərabər olan matrisə çırlaşmış (və ya məxsusi) matris, determinantı sıfırdan fərqli olan matrisə isə çırlaşmamış (və ya qeyri-məxsusi) matris deyilir.

Tərs matris[redaktə | əsas redaktə]

Fərz edək ki, A hər hansı tərtibli matris, Ag isə həmin tərtibdən olan vahid matrisdir. Əgər A ilə eyni tərtibdən olan elə B matrisi varsa ki,

bərabərliyi ödənilərsə, onda B matrisinə A-nın tərsi deyilir və B = A-1 kimi yazılır. Teoremə görə hər hansı A matrisinin tərsi varsa, o yeganədir. A matrisinin tərs matrisinin olması üçün zəruri və kafi şərt onun determinantının sıfırdan fərqli olmasıdır.

Həmçinin bax[redaktə | əsas redaktə]

İstinadlar[redaktə | əsas redaktə]